影响岩石力学性质的因素

发布时间: 2022-03-30       分类:  地质学基础 石油地质学

1.动载(冲击加载速度)的影响

动载荷的主要特点是它的作用速度快,在几秒钟内施加的载荷在理论上是不会在岩石中产生于静载荷根本不同的应力分布,但冲击钻具或爆炸的作用时间很短(不到几个微秒),可以在岩石中激起综合应力或是弹塑性的振动波。岩石对动载荷的抗力要比静载大得多。岩石的抗压强度也是随着试件加载速度的增大而增大的。在高速加载时所得的抗压强度值要比低速加载时大得多。

变形速率的增大引起了抗压强度的相应增大。在所试验的变形速率范围内,岩石的抗压强度最多可提高2倍左右。在三轴试验的条件下,同样也观察到了岩石的强度随加载速度的增加而增大。在动载条件下岩石强度大幅度增大的原因。是应力作用的短暂性,使岩石变形和破坏的有关机理,在应力波的作用时间内不能达到完全的程度。

冲击速度的增大,相应地也是变形速度的增大,供岩石变形的时间缩短了,使塑性变形的扩展受到了抑制,所以表现了塑性系数的下降。研究还表明,变形速度对低强度,高塑性及多孔岩石的性质的影响要比对高强度,低塑性岩石的影响来得大。

综上所述,可以认为,在目前牙轮钻头冲击岩石的速度范围内(不大于5米/秒),动压入与静压入破碎岩石时,岩石的机械性质并不呈现有本质上的差异。

2.压力的影响:

压力的影响包括地应力(含上覆岩层压力),井筒液柱压力及地层的孔隙压力三个方面。

上覆岩层压力是来源于岩层本身的重量。因此,只要知道了地下不同深度处各岩层的密度,便可以推算出该深度处的上覆层压力。由于地下岩层的密度是随岩性和深度变化的,所以上覆层压力也是随深度变化的。密度测井提供了计算上覆层压力的依据。

理论分析表明,无论是垂直的上覆岩层压力或是水平的地应力(均匀的或非均匀的)都会影响井壁岩石的应力状态,从而影响到井壁的稳定。当井壁岩石的最大和小主应力的差值越大时,问题表现得也越严重。如果井内泥浆的比重太小,一些软弱岩层就会产生剪切破坏而坍塌或者出现塑性流动使井眼产生缩径。如果井内泥浆的比重过大,又会使一些地层造成破裂(压裂)。地层的破裂压力决定于井壁上的应力状态,而这个应力状态又和地应力的大小紧密相关。

液柱压力和孔隙压力的影响:如果岩石是干的,不渗透的,孔隙度小且孔隙中不存在液体或气体,则增加液柱压力就好比在三轴试验时增大岩样的围压。

岩石的屈服强度随着孔隙压力的减小而增大。当围压一定时,只有当孔隙压力相对地小时,岩石才呈现塑性的破坏;增大孔隙压力将使岩石由塑性破坏转变为脆性的破坏。一些受压页岩由于孔隙压力相当高,当钻开井眼后,从井壁上因产生脆性的破坏而崩落,大概与这种机理有关。因此,在考虑页岩井壁的稳定时应该对孔隙压力给予足够的重视。相反地,在钻井工程中,孔隙压力有助于岩石的破碎从而提高钻井速度。

因此,随着井的加深或泥浆密度的增大,钻速的下降不仅是由于岩石硬度的增大,而且也由于岩石塑性的增大,特别是由于钻头齿每次与岩石的作用所破碎岩石的体积减小的缘故。

实际井底岩层中有孔隙流体的压力存在,因此岩屑的”压持作用”是由井底压差(即泥浆液柱压力与地层孔隙压力之差)引起的。钻头齿在冲击的间歇中,泥浆不可能全部移走被压持的岩屑,于是出现了岩屑的重切现象,这就是不良的井底清洗降低钻井速度的一个原因。

温度对岩石机械性质的影响:高压,高温对岩石力学性质的影响对于地球物理学家和够咋地质学家研究地壳应力和构造运动是非常重要的。对于钻井来说,随着所钻地层深度的增加。作用于其上的压力和温度是同时增大的。因此,如不考虑压力的作用只单独研究温度的影响就没有多大意义。

总的来说,在高温的各向压缩条件下,大部分沉积岩石是具有塑性变形能力的,而且沉积岩开始呈塑性变形的压力和温度值要比硅质的火成岩和变质岩低得多。

如果根据岩样破坏前呈现残余变形的大小来估计岩石的塑性,则在埋深10000米的范围内,可以把沉积岩石的塑性从大到小列出如下的顺序,盐岩,石灰岩,泥页岩,石膏,白云岩,石英岩。

液体介质对岩石机械性质的影响:许多研究者都发现,岩石中所含的水分使岩石的强度下降,而且含水量越多,强度下降得越多。含水量对一些岩石,例如泥页岩,也会影响其塑性性质,增大其流变特性。

关于液体介质对固体的作用机理,苏联科学院院士列宾捷尔系统进行了研究,认为在液体介质的作用下,使固体在变形和破坏过程中产生机械性质变化的原因,主要是由于在固液面产生的物理化学现象—-润湿和吸附。

根据液体的润湿程度,所有固体可分为两大类—亲水固体和憎水固体。亲水固体被水润湿得好些。被烃类液体润湿得差些。憎水固体则相反。几乎所有的钻井中所遇到的岩石都是亲水固体,都能被水很好的润湿。

水渗入到岩石中润湿岩石颗粒表面,减弱颗粒间界的联结力,导致岩石强度的降低。越是多孔及富含裂隙的岩石,水渗入得越深,岩石的强度也降低得越多。加表面活性剂于水中,将提高水的活性,能更大幅度地降低岩石的强度。如果在水中加入烃类非活性液体,则降低了水的活性,岩石的强度降低的幅度就比单纯的水要小得多。

钻井时岩石的破碎过程主要是在液体介质中进行的。这些液体介质-洗井液的物理化学性质往往是非常复杂的,包含有各种具有表面活性的无机和有机的物质。

在一定的条件下,液体介质由于吸附及润湿作用将促进岩石的破碎过程。吸附本身不仅覆盖着可见的岩石表面,而且也沿着颗粒的接触边界及裂隙(主要是微裂隙)渗入到表面层的深处。

在钻井的岩石破碎过程中,尤其在岩石的疲劳破碎过程中,井底岩石的表面层上充满了数量众多的各种尺寸和方向的裂纹,吸附层便沿着这些形成的表面裂隙挤入到井底岩石的深部,直到所吸附的原子或分子的尺寸等于裂纹的宽度为止。列宾捷尔认为,吸附层挤入微裂隙是由于产生吸附时,岩石的自由表面能减小的缘故。

外来的介质,包括水,参与了岩石的破碎过程,而水的活性又由于加入吸附质而大大提高。这些被吸附的物质可称为”硬度减低剂”。而这种因吸附作用而降低硬度的现象被称为” 列宾捷尔效应”。

对吸附降低硬度起主要作用的是微裂纹。大的裂隙只提供吸附层赖以挤入到最细薄裂纹入口处的通道。吸附层挤入微裂纹的速度与微裂缝的厚度无关。当液体流到为裂缝口时,液体能紧密地吸附在固体表面上的表面活性物质分子就能超过液体的侵入速度,沿裂缝两面而跑在前头,一直跑到微裂缝最狭窄的地方。另外,还可以推测出被吸附物质进入固体内的另一种机理:当微裂缝在液面下形成时,为裂缝空间处于真空状态,所以液体的蒸汽以及液体中所溶解的物质能马上饱和微裂缝的空间,同时被吸附层能覆盖住微裂缝的整个表面,并在微裂缝两侧产生附加的契入压力以阻止裂缝的闭合,从而有助于疲劳裂纹的扩展,提高岩石破碎的效率。

 

根据选择性吸附的道理,只要选择恰当的表面活性剂使其只对岩石表面产生吸附,而不是被金属或硬质合金所吸附,则也能同时到达提高钻头的耐磨性。